Letters to the Editor

2,6-Dioxo-4,8-diphenyl-1,5-dichlorotricyclo[5.1.0.0^{3,5}]octane as a product of the reaction of 3,3-dichloropentane-2,4-dione with benzaldehyde

V. A. Mamedov, a* E. A. Berdnikov, b I. E. Ismaev, a and I. A. Litvinova

^a A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan' Scientific Center of the Russian Academy of Sciences, 8 ul. Akad. Arbuzova, 420083 Kazan', Russian Federation.

 Fax: +7 (843 2) 752 253
 ^b V. I. Ul'yanov-Lenin Kazan' State University, 420008 Kazan', Russian Federation

It has been previously demonstrated that 1-acetoxy-1-phenyl-2,2-dichlorobutan-3-one (1) is the main product of condensation of 3,3-dichloropentan-2,4-dione with benzaldehyde in the presence of EtONa; 1 is formed due to the insertion of benzaldehyde into the C-C σ -bond of dichloropentane-2,4-dione.

A more detailed investigation of the reaction products by spectral methods (IR, ¹H and ¹³C NMR) and X-ray analysis indicated the formation of 2,6-dioxo-4,8-diphenyl-1,5-dichlorotricyclo[5.1.0^{3,5}]octane (2) (m.p. 236—237 °C, from DMSO), as a result of the side process, along with compound 1 (Scheme 1).

¹H NMR (DMSO-d₆, δ , J/Hz): 7.55 (br.s, 10 H, 2 C₆H₅); 4.15 (d, 2 H, H(3) and H(7), ${}^{3}J_{\text{H(7)},\text{H(3)}} = {}^{3}J_{\text{H(3)},\text{H4}} = 7.26$); 3.59 (d, 2 H, H(4) and H(a)). ¹³C NMR: 195.7 (s, C(2) and C(6)); 135.4 (s, C_i); 133.2 (d, C_o); 132.3 (d, C_m); 132.2 (d, C_p); 55.2 (s, C(1) and C(5)); 41.63 (d, C(3) and C(7)); 39.2 (d, C(4) and C(8)). Found (%): C, 67.31; H, 3.87; Cl, 19.77. C₂₀H₁₄Cl₂O₂. Calculated (%): C, 67.24; H, 3.95; Cl, 19.85.

References

F. G. Sibgatullina, *Izv. Acad. Nauk, Ser. Khim.*, 1993, 1962 [Russ. Chem. Bull., 1993, **42**, 1879 (Engl. Transl.)].

1. V. A. Mamedov, E. A. Berdnikov, I. A. Litvinov,

Received October 30, 1993; in revised form January 12, 1995

Regioselective α -arylation of N-vinylpyrroles by the Heck reaction

A. F. Shmidt, T. A. Vladimirova, E. Yu. Shmidt,* and T. V. Dmitrieva

Irkutsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 ul. Favorskogo, 664033 Irkutsk, Russian Federation. Fax: +7 (395 2) 466 434

N-Vinylpyrroles which became available from ketoximes and acetylene^{1,2} have been used by as substrates in the Heck reaction (Scheme 1).

All of the experiments were carried out under conditions routinely used for Heck arylation (DMF as a solvent, NBu₃ as a base, PdCl₂ as a catalyst, 80 °C).

Unsubstituted N-vinylpyrrole was found to be the most reactive (Table 1, Entry 1). As usual in the Heck reaction, β -trans-substitution ($\alpha/\beta = 30/70$) dominates

in this case. However, arylation of N-vinyl-2,3-dialkylpyrroles (see Table 1, Entries 2 to 7) unexpectedly exhibits high regioselectivity toward the α -position of the vinyl group for different aryl iodides. This high percentage of α -arylation under the standard conditions of the Heck reaction has not been observed previously, and it was achieved in the arylation of vinyl ethers only when the halogen in the aryl halides was replaced by a triflate substituent.³

Table 1. N-Vinylpyrroles in the Heck reaction

Entry	R ¹	R ²	Aryl halide	By-product	Rate, $w \cdot 10^{-3}$ /mol L ⁻¹ min ⁻¹	α/β ratio*	Yield α+β (%)	
1	Н	Н	PhI	Not found	9.4	30 : 70	100	
2	Me	Me	PhI	Diphenyl	1.75	95 : 5	90	
3	Me	Pr^{i}	PhI	Diphenyl	1.80	100:0	90	
4	Me	Pr^n	PhI	Diphenyl	4.3	95 : 5	85.0	
5	Me	Pr^n	p-C ₆ H ₄ IPh	Quaterphenyl	2.22	100:0	66.5	
6	Me	Pr^n	$p-C_{6}H_{4}I_{2}**$	Not found	1.97	100:0	82	
7	Ph	Pr^{i}	PhI	Diphenyl	1.23	100:0	83	

^{*} B-Products contained only the trans-isomer.

This compound was obtained as the product.